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The problem of movement

How do we move to achieve a goal?
I complicated by flexibility
I final “goal” posture depends on start point
I rapid accommodation to feedback and perturbation



Optimization principles

Of all the different ways to achieve a goal, we often seem to choose the smoothest.

I Flash & Hogan (1985) – minimum jerk (third derivative) of effector such as hand (or
gaze)
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I Uno, Kawato & Suzuki (1989) – minimum rate of change of joint torque.
I joints, not effector
I muscle outputs not kinematics
I solution will depend on musculoskelatal transformations
I predicts path curvature

I Nakano et al (1999) elaborated to minimum commanded torque change – includes a
model of muscles

But why should movements be smooth in this way? And what does this have to do with
achieving a goal?



Optimality of outcome

Harris & Wolpert (1998) suggested that planning to achieve outcome with minimum error in
the face of signal dependent noise leads to smoothness.
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Choose control sequence to minimise expected error in endpoint at T ; examine trajectory.



Optimal path control



Optimal path control



Feedback Control

Todorov & Jordan (2002) incorporate signal-dependent noise into a feedback control model.
I noise suppressed in relevant dimensions of outcome
I noise (and initial conditions) in irrelevant dimensions uncontrolled, and may increase
I predicts both trajectories and systematic and noisy variability

Optimal stochastic control:
I cost-to-go (value) based planning: Hamilton-Bellman-Jacobi equation

S(xt) = C(ut) + Ep(xt+1|xt ,ut ) [S(xt+1)]

minimising over ut defines optimal control policy
I state-estimation: Kalman filtering



Controllers



State estimation

 



Shaped variance



Path variance



Path variance


