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The problem of movement
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How do we move to achieve a goal?
» complicated by flexibility
» final “goal” posture depends on start point
» rapid accommodation to feedback and perturbation



Optimization principles

Of all the different ways to achieve a goal, we often seem to choose the smoothest.

» Flash & Hogan (1985) — minimum jerk (third derivative) of effector such as hand (or
gaze)
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» Uno, Kawato & Suzuki (1989) — minimum rate of change of joint torque.

> joints, not effector
» muscle outputs not kinematics
» solution will depend on musculoskelatal transformations

» predicts path curvature
» Nakano et al (1999) elaborated to minimum commanded torque change — includes a
model of muscles
But why should movements be smooth in this way? And what does this have to do with
achieving a goal?



Optimality of outcome

Harris & Wolpert (1998) suggested that planning to achieve outcome with minimum error in
the face of signal dependent noise leads to smoothness.
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Choose control sequence to minimise expected error in endpoint at T; examine trajectory.



Optimal path control
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Optimal path control
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Feedback Control

Todorov & Jordan (2002) incorporate signal-dependent noise into a feedback control model.
» noise suppressed in relevant dimensions of outcome
» noise (and initial conditions) in irrelevant dimensions uncontrolled, and may increase
» predicts both trajectories and systematic and noisy variability

Optimal stochastic control:
» cost-to-go (value) based planning: Hamilton-Bellman-Jacobi equation

S(Xf) = C(u’) + EP(Xt+1 | xt,ur) [S(Xf+1 )]

minimising over u; defines optimal control policy

> state-estimation: Kalman filtering



Controllers
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State estimation
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Shaped variance

Optimal control Redundancy elimination
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Path variance

Experimental data

\A: 5 Targets
B: 21 Targets
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Path variance
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Experimental data

Optimal control
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